602 research outputs found

    MEASUREMENT OF PRICE RISK IN REVENUE INSURANCE: IMPLICATIONS OF DISTRIBUTIONAL ASSUMPTIONS

    Get PDF
    A variety of crop revenue insurance programs have recently been introduced. A critical component of revenue insurance contracts is quantifying the risk associated with stochastic prices. Forward-looking, market-based measures of price risk which are often available in form of options premia are preferable. Because such measures are not available for every crop, some current revenue insurance programs alternatively utilize historical price data to construct measures of price risk. This study evaluates the distributional implications of alternative methods for estimating price risk and deriving insurance premium rates. A variety of specification tests are employed to evaluate distributional assumptions. Conditional heteroskedasticity models are used to determine the extent to which price distributions may be characterized by nonconstant variances. In addition, these models are used to identify variables which may be used for conditioning distributions for rating purposes. Discrete mixtures of normals provide flexible parametric specifications capable of recognizing the skewness and kurtosis present in commodity pricesRisk and Uncertainty,

    MEASUREMENT OF PRICE RISK IN REVENUE INSURANCE: IMPLICATIONS OF DISTRIBUTIONAL ASSUMPTIONS

    Get PDF
    A variety of crop revenue insurance programs is now available. These programs require measurement of price risk. This article investigates the appropriateness of distributional assumptions underlying current and proposed alternative actuarial methods. Our results find that prices are best modeled using a flexible mixture of normals distribution.Demand and Price Analysis, Risk and Uncertainty,

    Economic Assessment of FMDv Releases from the National Bio and Agro Defense Facility

    Get PDF
    Citation: Pendell, D. L., Marsh, T. L., Coble, K. H., Lusk, J. L., & Szmania, S. C. (2015). Economic Assessment of FMDv Releases from the National Bio and Agro Defense Facility. Plos One, 10(6), 22. doi:10.1371/journal.pone.0129134This study evaluates the economic consequences of hypothetical foot-and-mouth disease releases from the future National Bio and Agro Defense Facility in Manhattan, Kansas. Using an economic framework that estimates the impacts to agricultural firms and consumers, quantifies costs to non-agricultural activities in the epidemiologically impacted region, and assesses costs of response to the government, we find the distribution of economic impacts to be very significant. Furthermore, agricultural firms and consumers bear most of the impacts followed by the government and the regional non-agricultural firms

    Cosmic Microwave Background Anisotropy Measurement From Python V

    Get PDF
    We analyze observations of the microwave sky made with the Python experiment in its fifth year of operation at the Amundsen-Scott South Pole Station in Antarctica. After modeling the noise and constructing a map, we extract the cosmic signal from the data. We simultaneously estimate the angular power spectrum in eight bands ranging from large (l ~ 40) to small (l ~ 260) angular scales, with power detected in the first six bands. There is a significant rise in the power spectrum from large to smaller (l ~ 200) scales, consistent with that expected from acoustic oscillations in the early Universe. We compare this Python V map to a map made from data taken in the third year of Python. Python III observations were made at a frequency of 90 GHz and covered a subset of the region of the sky covered by Python V observations, which were made at 40 GHz. Good agreement is obtained both visually (with a filtered version of the map) and via a likelihood ratio test.Comment: 28 pages, ApJ accepted, to appear v584 n2 ApJ Feb 20, 200

    The Tensor to Scalar Ratio of Phantom Dark Energy Models

    Get PDF
    We investigate the anisotropies in the cosmic microwave background in a class of models which possess a positive cosmic energy density but negative pressure, with a constant equation of state w = p/rho < -1. We calculate the temperature and polarization anisotropy spectra for both scalar and tensor perturbations by modifying the publicly available code CMBfast. For a constant initial curvature perturbation or tensor normalization, we have calculated the final anisotropy spectra as a function of the dark energy density and equation of state w and of the scalar and tensor spectral indices. This allows us to calculate the dependence of the tensor-to-scalar ratio on w in a model with phantom dark energy, which may be important for interpreting any future detection of long-wavelength gravitational waves.Comment: 5 pages, 4 figure

    The pressure-volume-temperature relationship of cellulose

    Get PDF
    Pressure–volume–temperature (PVT) mea- surements of a-cellulose with different water contents, were performed at temperatures from 25 to 180 °C and pressures from 19.6 to 196 MPa. PVT measurements allowed observation of the combined effects of pressure and temperature on the specific volume during cellulose thermo-compression. All isobars showed a decrease in cellulose specific volume with temperature. This densification is associated with a transition process of the cellulose, occurring at a temperature defined by the inflection point Tt of the isobar curve. Tt decreases from 110 to 40 °C with pressure and is lower as moisture content increases. For isobars obtained at high pressures and high moisture contents, after attaining a minimum, an increase in volume is observed with temperature that may be related to free water evaporation. PVT a-cellulose experimental data was compared with predicted values from a regression analysis of the Tait equations of state, usually applied to synthetic polymers. Good correla- tions were observed at low temperatures and low pressures. The densification observed from the PVT experimental data, at a temperature that decreases with pressure, could result from a sintering phenomenon, but more research is needed to actually understand the cohesion mechanism under these conditions

    Scaling solutions in general non-minimal coupling theories

    Get PDF
    A class of generalized non-minimal coupling theories is investigated, in search of scaling attractors able to provide an accelerated expansion at the present time. Solutions are found in the strong coupling regime and when the coupling function and the potential verify a simple relation. In such cases, which include power law and exponential functions, the dynamics is independent of the exact form of the coupling and the potential. The constraint from the time variability of GG, however, limits the fraction of energy in the scalar field to less than 4% of the total energy density, and excludes accelerated solutions at the present.Comment: 10 pages, 3 figures, accepted for publication in Phys. Rev.

    First Estimations of Cosmological Parameters From BOOMERANG

    Get PDF
    The anisotropy of the cosmic microwave background radiation contains information about the contents and history of the universe. We report new limits on cosmological parameters derived from the angular power spectrum measured in the first Antarctic flight of the BOOMERANG experiment. Within the framework of inflation-motivated adiabatic cold dark matter models, and using only weakly restrictive prior probabilites on the age of the universe and the Hubble expansion parameter hh, we find that the curvature is consistent with flat and that the primordial fluctuation spectrum is consistent with scale invariant, in agreement with the basic inflation paradigm. We find that the data prefer a baryon density Ωbh2\Omega_b h^2 above, though similar to, the estimates from light element abundances and big bang nucleosynthesis. When combined with large scale structure observations, the BOOMERANG data provide clear detections of both dark matter and dark energy contributions to the total energy density Ωtot\Omega_{\rm {tot}}, independent of data from high redshift supernovae.Comment: As submitted to PRD, revised longer version with an additional figur

    Tunneling in Λ\Lambda Decaying Cosmologies and the Cosmological Constant Problem

    Full text link
    The tunneling rate, with exact prefactor, is calculated to first order in \hbar for an empty closed Friedmann-Robertson-Walker (FRW) universe with decaying cosmological term ΛRm\Lambda \sim R^{-m} (RR is the scale factor and mm is a parameter 0m20\leq m \leq 2). This model is equivalent to a cosmology with the equation of state pχ=(m/31)ρχp_{\chi}=(m/3 -1)\rho_{\chi}. The calculations are performed by applying the dilute-instanton approximation on the corresponding Duru-Kleinert path integral. It is shown that the highest tunneling rate occurs for m=2m=2 corresponding to the cosmic string matter universe. The obtained most probable cosmological term, like one obtained by Strominger, accounts for a possible solution to the cosmological constant problem.Comment: 21 pages, REVTEX, The section 3 is considerably completed including some physical mechanisms supporting the time variation of the cosmological constant, added references for the section 3. Accepted to be published in Phys. Rev.
    corecore